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Abstract
An integral equation describing the fuel distribution necessary to maintain a
flat flux in a nuclear reactor in two group transport theory is reduced to the
solution of a singular integral equation. The formalism developed enables the
physical aspects of the problem to be better understood and its relationship with
the corresponding diffusion theory model is highlighted. The integral equation
is solved by reducing it to a non-singular Fredholm equation which is then
evaluated numerically.

1. Introduction

In two earlier papers (Cassell and Williams 2003, Williams 2003), henceforth denoted by I
and II, respectively, the problem of the conditions required to maintain a flat thermal flux in
a nuclear reactor has been examined in the context of transport theory. In paper I, one-speed
transport theory was employed and no other approximations made. It was then possible to
obtain an exact solution of the singular integral equation that arose. In paper II, the two
group model was introduced thereby enabling fission to be dealt with in a realistic manner for
thermal reactors. It was necessary in II to introduce an approximation regarding the angular
flux of thermal neutrons in the core which, however, was shown to lead to very small errors for
weakly absorbing moderators. The outcome was an integral equation for the fuel distribution
across the core necessary to give a flat flux and in addition the minimum amount of fuel for
criticality. This integral equation takes the form

1 =
∫

V

dr′M(r′)[η�rm�atmPtf(|r − r′|) − �atmPt(|r − r′|)] (1)

where M(r) = N(r)σact/�atm, N(r) being the number density of fissile material at position r.
Also η = ν̄σft/σatc, where σft is the thermal microscopic fission cross section, σact is the
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thermal microscopic absorption cross section of the fuel and ν̄ is the mean number of neutrons
per fission. �atm is the macroscopic thermal absorption cross section of the moderator and
�rm is the slowing down cross section in the moderator. The kernels Ptf and Pt will be defined
below. Equation (1) embodies all of the restrictions of the original classic problem defined
by Goertzel (1956), who used diffusion theory; namely that the presence of the fuel shall not
affect the diffusion or slowing down properties of the core region.

In II, equation (1) was solved for a slab system by a numerical method. The results
obtained were sufficiently accurate to draw some important conclusions about the nature of
the solution. In particular, it was shown that, for a system whose critical size was less than
that required for minimum critical mass, the fuel distribution increased rapidly near the core-
reflector interface. Such behaviour had been observed in diffusion theory but the only way
to represent it mathematically was by the physically questionable addition of surface delta
functions. In paper II, we were able to show that such an increase near the core edge was
a natural consequence of transport theory and no supplementary delta functions are needed.
Such a rapidly varying form of M(r) near the surface placed a great strain upon the numerical
method employed to solve equation (1), and it was necessary to employ over 1000 mesh points
to obtain acceptable accuracy for such quantities as the total fuel mass. For this reason it
seemed important to solve the equation by a method analogous to that used in I. This paper
presents the mathematical procedure which leads to a solution and we are able to describe the
general form of the mass distribution function over the bulk of the core and near the edge.
Some numerical results are given in order to assess the accuracy of the earlier approximate
methods and to illustrate the solution.

2. Derivation of the integral equation

Although the derivation of equation (1) is given in II, it is convenient to repeat that derivation
here in a more transparent manner. Let us therefore write down the two group transport
equations in one-dimensional geometry (Davison 1957)

µ
∂ψt(x, µ)

∂x
+ (�tm(x) + �tc(x))ψt(x, µ) = 1

2
(�stm(x) + �stc(x))ψ0t(x) +

1

2
�rmψ0f(x) (2)

µ
∂ψf(x, µ)

∂x
+ �fm(x)ψf(x, µ) = 1

2
(�sfm(x) − �rm(x))ψ0f(x) +

1

2
ν̄�ft (x)ψ0t(x). (3)

In these equations, ψt and ψf are the thermal and fast angular fluxes, respectively. The cross
sections have their usual meanings and are, in general, position dependent.

If now we introduce Goertzel’s approximation that the presence of fuel does not influence
slowing down, and in addition we stipulate that there is no absorption in the fast group, we
have

µ
∂ψt(x, µ)

∂x
+ �tmψt(x, µ) = 1

2
(�stm + σstcN(x))ψ0t(x) +

1

2
�rmψ0f(x) − σtcN(x)ψt(x, µ)

(4)

µ
∂ψf(x, µ)

∂x
+ �fmψf(x, µ) = 1

2
(�sfm − �rm)ψ0f(x) +

1

2
ν̄σftN(x)ψ0t(x). (5)

Assuming that the reflector extends to infinity, we simplify equation (5) by taking Fourier
transforms in x, i.e. define

ψ̄ f(k, µ) =
∫ ∞

−∞
dx eikxψf(x, µ) (6)
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whence equation (5) becomes for the scalar fast flux

ψ̄0f(k) =
1
k

tan−1(k/�sfm)

1 − (�sfm−�rm)

k
tan−1(k/�sfm)

ν̄σft

∫ a

−a

dx eikxN(x)ψ0t(x). (7)

Inverting the transform leads to the following form:

ψ0f(x) = ν̄σft

∫ a

−a

dx ′N(x ′)ψ0t(x
′)Pf(|x − x ′|) (8)

where

Pf(x) = 1

2π

∫ ∞

−∞
dk e−ikx

1
k

tan−1(k/�sfm)

1 − (�sfm−�rm)

k
tan−1(k/�sfm)

. (9)

This Fourier integral is readily evaluated (Davison 1957) in the form

Pf(x) = Af e−ξx +
1

2

∫ 1

0

dµ

µ
g(crm, µ) e−�sfmx/µ (10)

where

Af = ξ
(
�2

sfm − ξ 2
)

crm
(
ξ 2 − (1 − crm)�2

sfm

)
�sfm

(11)

1

g(c, µ)

(
1 − cµ

2
log

(
1 + µ

1 − µ

))
+

(cπµ

2

)2
(12)

and ξ is the root of

1 = crm�sfm

2ξ
log

(
�sfm + ξ

�sfm − ξ

)
(13)

where crm = (�sfm − �rm)/�sfm.
Equation (8) is a link between the fast and thermal fluxes throughout the core and reflector.
Now we must consider the thermal flux equation (4). By definition, the scalar flux in

the core is a constant. However, as we have seen in both I and II, this does not imply that
the associated angular flux ψt(x, µ) is spatially constant or isotropic. Nevertheless, we have
shown in I and II that if the moderator is weakly absorbing, i.e. �atm/�tm � 1, then to a very
good approximation

ψt(x, µ) � 1
2	 (14)

where 	 is the constant scalar flux in the core. We shall use assumption (14) throughout. In
view of (14) we can write for the core region

�tm	 = (�stm + σstcN(x))	 + �rmψ0f(x) − σtcN(x)	 (15)

which simplifies to

(�atm + σatcN(x))	 = �rmψ0f(x). (16)

This equation relates the fuel density N(x) to the fast scalar flux ψ0f(x). Thus using (16) in
(8), we find

1 + M(x) = η

∫ a

−a

dx ′M(x ′)�rmPf(|x − x ′|). (17)

Equation (17) is an integral equation for M(x) = σactN(x)/�atm and it appears therefore that
the problem is solved once (17) is solved. Unfortunately, this is not so because (17) provides
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too drastic a simplification of the problem; the absence of any thermal diffusion kernel in (17)
alerts us to this omission.

If we take a Fourier transform of equation (4), then it is easily seen that

ψ̄0t(k) =
1
k

tan−1(k/�tm)

1 − �stm
k

tan−1(k/�tm)
[�rmψ̄0f(k) + σstc 〈N(x)ψ0t(x)〉]

− σtc

1 − �stm
k

tan−1(k/�tm)

∫ 1

−1

dµ

�tm − ikµ
〈N(x)ψt(x, µ)〉 (18)

where the angular brackets define a Fourier transform of the quantity in those brackets.
If we now use the assumption that the angular thermal flux is isotropic and spatially

constant in the core (but not of course in the reflector) then equation (18) becomes

ψ̄0t(k) =
1
k

tan−1(k/�tm)

1 − �stm
k

tan−1(k/�tm)
[�rmψ̄0f(k) − σatc〈N(x)	〉]. (19)

Inverting equation (19) we find

ψ0t(x) = �rm

∫ ∞

−∞
dx ′ψ0f(x

′)Pt(|x − x ′|) − σatc	

∫ a

−a

dx ′N(x ′)Pt(|x − x ′|) (20)

with

Pt(x) = At e−νx +
1

2

∫ 1

0

dµ

µ
g(csm, µ) e−�tmx/µ (21)

where

At = ν
(
�2

tm − ν2
)

csm
(
ν2 − (1 − csm)�2

tm

)
�tm

(22)

ν is the root of

1 = csm�tm

2ν
log

(
�tm + ν

�tm − ν

)
(23)

with csm = �stm/�tm.
If we now replace ψ0f(x) in equation (20) by equation (8), we find

ψ0t(x) = 	

∫ a

−a

dx ′M(x ′)[η�rm�atmPtf(|x − x ′|) − �atmPt(|x − x ′|)] (24)

where

Ptf(|x − x ′|) =
∫ ∞

−∞
dx ′′Pt(|x − x ′′|)Pf(|x ′′ − x ′|). (25)

Equation (24) is valid for all values of x but if we restrict x to the core region only where
ψ0t = 	, then it reduces to

1 =
∫ a

−a

dx ′M(x ′)[η�rm�atmPtf(|x − x ′|) − �atmPt(|x − x ′|)] (26)

which is another integral equation for M(x) and is the one-dimensional analogue of
equation (1). Equation (26) is to be used rather than equation (17) because it contains
information about thermal neutron diffusion in the system via Pt(x).

Physically, we can define �rmPf(x) as the slowing down kernel and �atmPt(x) as the
diffusion kernel. The kernel �rm�atmPtf(x) denotes the combined effect of slowing down and
diffusion. The algebraic form of Ptf(x) has been determined in II and can be written as

Ptf(x) = Aν

2ν
e−νx +

Aξ

2ξ
e−ξx +

1

4�tm

∫ 1

0
dµB0(µ) e−�tmx/µ +

1

4�tm

∫ 1/r̂

1
dµB1(µ) e−�tmx/µ

(27)
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where

Aν =
log

(
�sfm + ν

�sfm − ν

)
[
1 − crm�sfm

2ν
log

(
�sfm + ν

�sfm − ν

)] ν
(
�2

tm − ν2
)

csm�tm
[
ν2 − �2

tm(1 − csm)
] (28)

Aξ =
log

(
�tm + ξ

�tm − ξ

)
[
1 − csm�tm

2ξ
log

(
�tm + ξ

�tm − ξ

)] ξ
(
�2

sfm − ξ 2
)

crm�sfm
[
ξ 2 − �2

sfm(1 − crm)
] (29)

B0(µ) =
{

log
( 1 + r̂µ

1 − r̂µ

)
+ log

( 1 + µ

1 −µ

)
− 1

2crmr̂µ
(
π2 + log2

( 1 + r̂µ

1 − r̂µ

)) − 1
2csmµ

(
π2 + log2

( 1 + µ

1 − µ

))
}

g(csm, µ)g(crm, r̂µ)

(30)

B1(µ) =
log

(
µ + 1
µ − 1

)
1 − 1

2csmµ log
(

µ + 1
µ − 1

)g(crm, r̂µ). (31)

Now it is convenient to measure distance in units of the thermal mean free path 1/�tm. Thus
we write x̄ = x�tm, ξ̄ = ξ/�tm, ν̄ = ν/�tm and r̂ = �sfm/�tm. With these scalings and
omitting the overbar, equation (26) becomes

1

1 − csm
=

∫ a

−a

dx ′M(x ′)[η(1 − crm)r̂Ptf(|x − x ′|) − Pt(|x − x ′|)] (32)

where Ptf is written in an abbreviated notation as

Ptf(x) = Ct e−νx + Cf e−ξx +
∫ 1/r̂

0
dµE (µ) e−x/µ (33)

with

Ct = (1 − ν2) log
(

r̂ + ν
r̂ − ν

)
2csm(ν2 − 1 + csm)

[
1 − crm r̂

2ν
log

(
r̂ + ν
r̂ − ν

)] (34)

Cf =
(r̂2 − ξ 2) log

( 1 + ξ

1 − ξ

)
2crmr̂(ξ 2 − r̂2(1 − crm))

[
1 − csm

2ξ
log

( 1 + ξ

1 − ξ

)] (35)

and
E(µ) = 1

4B0(µ) 0 � µ � 1

= 1
4B1(µ) 1 � µ � 1/r̂.

The roots ν and ξ are found from

1 = csm

2ν
log

(
1 + ν

1 − ν

)
1 = r̂crm

2ξ
log

(
r̂ + ξ

r̂ − ξ

)
.

In the next section we will describe a method for solving equation (32).

3. The integral equation

3.1. Structure of the solution

Before discussing the method for solving equation (32), it is useful to recapitulate some results
from I and II. In I, which was for one-speed transport theory, we found that the solution for
c(τ ) [the quantity analogous to M(x)], takes the form

c(τ ) = 1 +
∫ 1

0
dµB(µ) cosh(τ/µ). (36)
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The integral term in (36) is important only near the core-reflector interface, where it diverges
to infinity as 1/

√
a − τ . On the other hand, we also know from Goertzel (1956) and from II,

that in diffusion theory for the two group case

M(x) = 1

η − 1
+ G0 cos λx + �[δ(x − a) + δ(x + a)] (37)

where λ = √
η − 1/Ls, Ls being the slowing down length. These two solutions together with

(33), suggest that in two group transport theory the solution will assume the form

M(x) = A0 + G0 cos λx +
∫ 1/r̂

0
dµA(µ) cosh(x/µ). (38)

We will show that equation (38) satisfies equation (32) provided A0, G0, λ and A(µ) obey
certain conditions. It is clear that, in transport theory, the physically questionable delta
functions are replaced by an ordinary function via the integral term in equation (38).

3.2. A subsidiary integral equation

Whilst we noted that equation (17) was not the complete solution because it ignores the
influence of thermal neutrons in the reflector, it does have some interest. This can best be
shown by replacing �rmPf(x) by its diffusion theory counterpart, namely:

�rmPf(x) � 1

2Ls
e−x/Ls ≡ Gf(x). (39)

Thus equation (17) becomes

1 + M(x) = η

∫ a

−a

dx ′M(x ′)Gf(|x − x ′|). (40)

But we can readily convert this integral equation into the following differential form:

L2
sM

′′(x) + (η − 1)M(x) = 1. (41)

Equation (33) is simply the equation derived by Goertzel (1956) in the two group model. Thus
equation (17), whilst not complete, does contain important information. The general solution
of (41) with λ = √

η − 1/Ls is

M(x) = 1

η − 1
+ G0 cos λx. (42)

However, G0 is an unknown constant and to obtain this it is necessary for equation (42) to
also satisfy the diffusion theory counterpart of equation (26) which is

1 =
∫ a

−a

dx ′M(x ′)

[
1

2

(
ηL

L2 − L2
s

− 1

L

)
e−|x−x ′ |/L − ηLs

2
(
L2 − L2

s

) e−|x−x ′ |/Ls

]
(43)

where we have noted that in diffusion theory

�atmPt(x) � 1

2L
e−x/L ≡ Gt(x) (44)

L being the diffusion length.
G0 can be determined by ensuring that equation (42) is consistent with equation (43). This

is discussed in II. Indeed, it can also be shown that an equation of the form of (37) containing
surface delta functions satisfies (43) and leads to a value for �.
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3.3. The general solution for M(x)

We seek a solution to equation (32) in the form defined by equation (38). If this is done and
the integrals over x ′ carried out, then it is found that equation (32) takes the form

1

1 − csm
= Z1A0 + Z2 cos λx + Z3 cosh νx + Z4 cosh ξx +

∫ 1/r̂

0
dµZ5(µ) cosh(x/µ). (45)

For this to be satisfied, it is necessary that

Z1A0 = 1

1 − csm

Z2 = 0, Z3 = 0, Z4 = 0 and also Z5(µ) = 0. These relations enable us to find equations
for A0, G0 λ and A(µ).

In order to calculate A0 we use the relation (A6) in the appendix with λ = 0 to get∫ 1

0
dµg(csm, µ) +

2At

ν
= 1

1 − csm
(46)

which leads to A0 = 1/(η − 1).
Setting Z2 = 0, we find the following equation:

0 = 2ν

ν2 + λ2
[ηr̂(1 − crm)Ct − At] +

2ξ

ξ 2 + λ2
ηr̂(1 − crm)Cf +

1

2
ηr̂(1 − crm)

×
[∫ 1

0

dµµB0(µ)

1 + λ2µ2
+

∫ 1/r̂

1

dµµB1(µ)

1 + λ2µ2

]
−

∫ 1

0

dµg(csm, µ)

1 + λ2µ2
. (47)

We can then use the following relations (see the appendix)

2νAt

λ2 + ν2
+

∫ 1

0

dµg(csm, µ)

1 + λ2µ2
= tan−1 λ

λ − csm tan−1 λ
(48)

and

2νCt

ν2 + λ2
+

2ξCf

ξ 2 + λ2
+

1

2

∫ 1

0

dµµB0(µ)

1 + λ2µ2
+

1

2

∫ 1/r̂

1

dµµB1(µ)

1 + λ2µ2

= tan−1(λ/r̂)

λ − crmr̂ tan−1(λ/r̂)

tan−1(λ)

λ − csm tan−1(λ)
(49)

to reduce equation (47) to

1 = [η(1 − crm) + crm]
tan−1(λ/r̂)

λ/r̂
. (50)

Equation (50) gives the root λ. It is interesting to note that if 1−crm � 1, this root approximates
to

λ �
√

η − 1

Ls
(51)

where Ls = 1/r̂
√

3(1 − crm) in agreement with diffusion theory. Equation (50) gives the
generalized value of λ for the transport equation.

The equations Z3 = 0 and Z4 = 0 give the following conditions:

1

η − 1
+

G0ν

ν2 + λ2
(ν cos λa − λ sin λa) = ν

2

∫ 1/r̂

0
dµψ(µ)

[
1

1 − νµ
− e−2a/µ

1 + νµ

]
(52)

1

η − 1
+

G0ξ

ξ 2 + λ2
(ξ cos λa − λ sin λa) = ξ

2

∫ 1/r̂

0
dµψ(µ)

[
1

1 − ξµ
− e−2a/µ

1 + ξµ

]
(53)
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where

ψ(µ) = µA(µ) ea/µ. (54)

Finally, with Z5(µ) = 0, we find the integral equation

0 = 2

η − 1
+

2G0

1 + λ2µ2
(cos λa − λµ sin λa) + Q(µ)ψ(µ)

+
∫ 1/r̂

0
dµ0ψ(µ0)

[
1

µ0 − µ
+

e−2a/µ0

µ0 + µ

]
. (55)

Equation (55) is a singular integral equation for ψ(µ) with 0 � µ � 1/r̂ . The coefficient
Q(µ) is defined as G(µ)/F (µ) where

G(µ) = ηr̂(1− crm)

{
2νCt

1 − ν2µ2
+

2ξCf

1 − ξ 2µ2
+

1

2
P.

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2
+

1

2

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2

}

−
{

2νAt

1 − ν2µ2
+ P.

∫ 1

0

dµ′g(csm, µ′)
µ′2 − µ2

}
0 � µ � 1

= ηr̂(1 − crm)

{
2νCt

1 − ν2µ2
+

2ξCf

1 − ξ 2µ2
+

1

2

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2

+
1

2
P.

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2

}
−

{
2νAt

1 − ν2µ2
+

∫ 1

0

dµ′g(csm, µ′)
µ′2 − µ2

}
1 � µ � 1/r̂ (56)

and

F(µ) = ηr̂(1 − crm)
1

4
B0(µ) − 1

2µ
g(csm, µ) 0 � µ � 1

= ηr̂(1 − crm)
1

4
B1(µ) 1 � µ � 1/r̂. (57)

Now it is shown in I that
2νAt

1 − ν2µ2
+

∫ 1

0

dµ′g(csm, µ′)
µ′2 − µ2

= 1

2µ
g(csm, µ)

{
−L(µ) +

1

2
csmµ(π2 + L2(µ))

}
0 < µ < 1

= − 1

2µ

L̄(µ)

1 − 1
2µcsmL̄(µ)

1 < µ < 1/r̂ (58)

where L(µ) = log((1 + µ)/(1 − µ)) and L̄(µ) = log((µ + 1)/(µ − 1)). We also show in the
appendix that

2νCt

1 − ν2µ2
+

2ξCf

1 − ξ 2µ2
+

1

2
P.

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2
+

1

2

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2

= 1

4
g(csm, µ)g(crm, r̂µ)

[
π2 −

(
L(µ) − 1

2
csmµ(π2 + L2(µ))

)

×
(

L(r̂µ) − 1

2
crmr̂µ(π2 + L2(r̂µ))

)]
0 � µ � 1 (59)

and
2νCt

1 − ν2µ2
+

2ξCf

1 − ξ 2µ2
+

1

2

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2
+

1

2
P.

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2

= −1

4
B1(µ)

(
L(r̂µ) − 1

2
crmr̂µ(π2 + L2(r̂µ))

)
1 � µ � 1/r̂. (60)
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Equations (59) and (60) can also be obtained from equation (49) by allowing λ → i
µ

± 0.
Then if we define p = ηr̂(1 − crm), and

St(µ) = L(µ) − 1
2csmµ(π2 + L2(µ)) (61)

Sf(µ) = L(r̂µ) − 1
2crmr̂µ(π2 + L2(r̂µ)) (62)

we have

Q(µ) = pµg(crm, r̂µ)[π2 − St(µ)Sf(µ)] + 2St(µ)

pµg(crm, r̂µ)[St(µ) + Sf(µ)] − 2
0 � µ � 1

= −Sf(µ) +
2

pµg(crm, r̂µ)
1 � µ � 1/r̂. (63)

We note that Q(µ) is continuous at µ = 1, but the gradient is not.
In the special case when r̂ = 1, Q(µ) simplifies to

Q(µ) = −L(µ) +
1

2
µ(π2 + L2(µ))

(α + 1)csmg(csm, µ) + αcrmg(crm, µ)

(α + 1)g(csm, µ) + αg(crm, µ)
(64)

where α = η(1 − crm)/(crm − csm).
Thus, we now have the necessary relations for calculating the mass distribution function

M(x). An important integral quantity which is proportional to the amount of fuel in the
core is

MT =
∫ a

−a

dxM(x) = 2a

η − 1
+

2G0 sin λa

λ
+

∫ 1/r̂

0
dµψ(µ)(1 − e−2a/µ). (65)

We note that G0 is unknown but enters equations (52) and (53) and hence we have G0 in terms
of ψ(µ).

4. Solution of the integral equation

In order to solve equation (55) it is convenient to write it in the following form:

Q(µ)ψ(µ) + P

∫ 1/r̂

0

dµ0ψ(µ0)

µ0 − µ
= −f (µ) (66)

where

f (µ) = 2

η − 1
+

2G0

1 + λ2µ2
(cos λa − λµ sin λa) +

∫ 1/r̂

0

dµ0ψ(µ0)

µ0 + µ
e−2a/µ0 . (67)

We now reduce equation (66) to a Hilbert problem by introducing the following complex
function:

�(z) =
∫ 1/r̂

0

dµ0ψ(µ0)

µ0 − z
. (68)

Equation (66) can then be written as

(Q(µ) + iπ)�+(µ) − (Q(µ) − iπ)�−(µ) = −2π if (µ). (69)

Let

�(z) = 1

2π i

∫ 1/r̂

0
log

(
Q(µ) − iπ

Q(µ) + iπ

)
dµ

µ − z
(70)

or

�(z) = − 1

π

∫ 1/r̂

0

�(µ) dµ

µ − z
(71)
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where

�(µ) = arg(Q(µ) + iπ) = tan−1(π/Q(µ)) (72)

and �(µ) goes from π/2 to 0 as µ goes from 0 to 1/r̂ . Now as µ → 0, Q(µ) = O(µ) so
�(µ) = π/2 + O(µ). Hence �(z) − 1

2 log(−z) has a finite limit as z → 0. Also

�(µ) = O

(
1

log2(1/r̂ − µ)

)
(73)

as µ → 1/r̂ and �(z) has a finite limit as z → 1/r̂ . Now set

X(z) = 1

z
e�(z). (74)

Then

X(z) = (−z)−1/2(a0 + o(1)) (75)

as z → 0 for some non-zero constant a0. For the most general solution we aim to get

X(z) = (−z)α(a0 + o(1)) (76)

with −1 < α � 0. Also X(z) has a finite non-zero limit as z → 1/r̂ . Further,

X+(µ)

X−(µ)
= Q(µ) − iπ

Q(µ) + iπ
(77)

so equation (69) can be written as

�+(µ)

X+(µ)
− �−(µ)

X−(µ)
= − 2π if (µ)

X+(µ)(Q(µ) + iπ)
. (78)

Now since �(z) = O(1/z) at infinity and X(z) ∼ 1/z,

�(z)

X(z)
= K −

∫ 1/r̂

0

dµf (µ)

X+(µ)(Q(µ) + iπ)(µ − z)
(79)

for some constant K. On using

ψ(µ) = 1

2π i
(�+(µ) − �−(µ)) (80)

and replacing f (µ) by (67), we obtain a non-singular integral equation for ψ(µ). The two
constants K and G0 can be determined by equations (52) and (53).

To proceed we write

1

X+(µ)
− 1

X−(µ)
= 1

X+(µ)

(
1 − Q(µ) − iπ

Q(µ) + iπ

)
= 2π i

X+(µ)(Q(µ) + iπ)
(81)

so that ∫ 1/r̂

0

dµ

X+(µ)(Q(µ) + iπ)(µ − z)
= 1

2π i

∫ (0−, 1
r̂
−) dζ

X(ζ )(ζ − z)
. (82)

For large z, from (71) and (74)

1

X(z)
= z − ϑ0 + O(1/z) (83)

with

ϑ0 = 1

π

∫ 1/r̂

0
�(µ) dµ (84)
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and so ∫ 1/r̂

0

dµ

X+(µ)(Q(µ) + iπ)(µ − z)
= 1

X(z)
− z + ϑ0. (85)

Further,∫ 1/r̂

0

dµ

X+(µ)(Q(µ) + iπ)(µ − z)(µ − ζ )
= 1

z − ζ

(
1

X(z)
− 1

X(ζ)

)
− 1. (86)

Using (85) and (86) to evaluate the integral in (79) we obtain after some manipulation,

�(z) = (K + H(z) + G0h(z))X(z) − H ∗(z) − G0h
∗(z) (87)

with

H(z) = 2(z − ϑ0)

η − 1
+

∫ 1/r̂

0
dµ e−2a/µψ(µ)

(
1

(z + µ)X(−µ)
+ 1

)
(88)

H ∗(z) = 2

η − 1
+

∫ 1/r̂

0

dµψ(µ)

z + µ
e−2a/µ (89)

h(z) = eiλa

(1 − iλz)X(−i/λ)
+

e−iλa

(1 + iλz)X(i/λ)
− 2 sin λa

λ
(90)

and

h∗(z) = eiλa

1 − iλz
+

e−iλa

1 + iλz
. (91)

Consider now the constraints of equations (52) and (53). The first of these can be written as

2

η − 1
+

2G0ν

ν2 + λ2
(ν cos λa − λ sin λa) + �(1/ν) + ν

∫ 1/r̂

0

dµψ(µ)

1 + νµ
e−2a/µ = 0 (92)

i.e.

H ∗(1/ν) + G0h
∗(1/ν) + �(1/ν) = 0. (93)

Then from equation (87),

K + H(1/ν) + G0h(1/ν) = 0. (94)

Likewise (53) gives

K + H(1/ξ) + G0h(1/ξ) = 0. (95)

From equations (94) and (95), we find

K = 1

k(1/ν, 1/ξ)
(h(1/ξ)H(1/ν) − h(1/ν)H(1/ξ)) (96)

and

G0 = 1

k(1/ν, 1/ξ)
(H(1/ξ) − H(1/ν)) (97)

where we have put

k(z, ζ ) = h(z) − h(ζ ) (98)

which becomes

k(z, ζ ) = iλ(z − ζ )

{
eiλa

(1 − iλz)(1 − iλζ)X(−i/λ)
− e−iλa

(1 + iλz)(1 + iλζ)X(i/λ)

}
. (99)
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From equations (80) and (87),

ψ(µ) = 1

2π i
(X+(µ) − X−(µ))(K + H(µ) + G0h(µ)) (100)

and from (71), (72) and (74)

1

2π i
(X+(µ) − X−(µ)) = −

exp
(− 1

π
P

∫ 1/r̂

0
dµ0�(µ0)

µ0−µ

)
µ(Q(µ)2 + π2)1/2

. (101)

Equations (100), (96) and (97) give

ψ(µ) = γ (µ)

[
h(1/ν)H(1/ξ) − h(1/ξ)H(1/ν)

− k(1/ν, 1/ξ)H(µ) + (H(1/ν) − H(1/ξ))h(µ)

]
(102)

with

γ (µ) =
exp

(− 1
π
P

∫ 1/r̂

0
dµ0�(µ0)

µ0−µ

)
µ(Q(µ)2 + π2)1/2k(1/ν, 1/ξ)

. (103)

Substitution of H from (88) into (102) leads to

ψ(µ) = γ (µ)

[
F0(µ) +

∫ 1/r̂

0
dµ0 e−2a/µ0F(µ0, µ)ψ(µ0)

]
(104)

with

F0(µ) = 2

η − 1

(
1

ν
k(µ, 1/ξ) − 1

ξ
k(µ, 1/ν) − µk(1/ν, 1/ξ)

)
(105)

and

F(µ0, µ) = 1

X(−µ0)

(
νk(µ, 1/ξ)

1 + νµ0
− ξk(µ, 1/ν)

1 + ξµ0
− k(1/ν, 1/ξ)

µ + µ0

)
. (106)

From (97) and (88)

G0 = ν − ξ

k(1/ν, 1/ξ)

(
2

(η − 1)νξ
−

∫ 1/r̂

0

dµψ(µ)

X(−µ)(1 + νµ)(1 + ξµ)
e−2a/µ

)
. (107)

Equation (104) is a non-singular integral equation for ψ(µ). We note that F0 is bounded on
[0, 1/r̂] while

|F(µ0, µ)| � K0µ
1/2
0

µ + µ0
(108)

for some constant K0; γ is unbounded only as µ → 0, where
√

µγ (µ) has a finite non-zero
limit. Hence ψ(µ) ∼ K1µ

−1/2 as µ → 0 for some constant K1. It follows with the use of
(54) and (38) that as x → a

M(x) ∼ K1
√

π

2
√

a − x
. (109)

Thus, we have equations which determine all of the parameters or functions appearing in
equation (38) for the mass distribution M(x).
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5. The conditions for minimum critical mass

It was shown in II where equation (1) was originally derived, that although it describes the
physical situation of minimum critical mass, there does exist a limiting value of the half-
thickness a (say ac) for which this mass is an absolute minimum. To put it otherwise, any
value of a < ac gives a minimum critical mass compared with any other distribution of fuel,
but the value for a = ac gives an absolute minimum. For a > ac, no steady state solution
exists. The form of M(x) when a = ac is significantly different from the case where a < ac.
This was first noted in diffusion theory by Goertzel (1956), who found that it was necessary, for
a < ac, to add concentrated fuel at the core-reflector interface in the form of delta functions.
Thus Goertzel found that the diffusion theory form of M(x) was as shown in equation (37).
For a = ac, � = 0, whereas for a < ac, � > 0.

The transport analogue of this behaviour is reflected in the behaviour of M(x) near x = a.
As we have shown in equation (109) for general values of a this diverges at x = a. However,
there is a condition which prevents this divergence and it defines the absolute minimum half-
thickness a = ac in transport theory. The appropriate condition can be found by examining
the value of M(x) at x = a, namely from equation (38)

M(a) = 1

η − 1
+ G0 cos λa +

1

2

∫ 1/r̂

0

dµ

µ
ψ(µ)(1 + e−2a/µ). (110)

Now let us insert equation (104) for ψ(µ) into equation (110) to obtain for the integral term,

1

2

∫ 1/r̂

0

dµ

µ
(1 + e−2a/µ)γ (µ)

[
F0(µ) +

∫ 1/r̂

0
dµ0F(µ0, µ)ψ(µ0) e−2a/µ0

]
. (111)

The reason for the divergence is due to the behaviour of the integrand for µ → 0. This is
determined by γ (µ) ∼ const/

√
µ because F0(µ) and F(µ0, µ) both tend to constants. Thus

the singularity is of order µ−3/2 and the integral diverges. However, we note that if we define
the quantity in square brackets in (111) as R(µ), then we may write

R(µ) = R(0) + µR̃(µ). (112)

If we define

R(0) = 0 (113)

then the singularity in the integrand of equation (111) is removed and the integral is finite.
Now R(0) = 0 corresponds to

F0(0) +
∫ 1/r̂

0
dµ0F(µ0, 0)ψ(µ0) e−2a/µ0 = 0. (114)

Using (105) and (106) together with the definition of k(z, ζ ), we find after some manipulation
that ac is given by

tan λ(ac − q) = �1

�2
(115)

where

�1 = 2λ2(ν + ξ)

(η − 1)νξ
+

∫ 1/r̂

0
dµ0

ψ(µ0) e−2a/µ0

X(−µ0)

νξ − λ2 − λ2(ν + ξ)µ0

µ0(1 + νµ0)(1 + ξµ0)
(116)

�2 = 2λ(λ2 − νξ)

(η − 1)νξ
+ λ

∫ 1/r̂

0
dµ0

ψ(µ0) e−2a/µ0

X(−µ0)

ν + ξ + (νξ − λ2)µ0

µ0(1 + νµ0)(1 + ξµ0)
. (117)

The parameter q arises by writing X(i/λ) in the form

X(−i/λ) = iλ

p
eiλq (118)
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where

p = exp

(
λ2

π

∫ 1

0

�(µ)µdµ

1 + λ2µ2

)
(119)

q = 1

π

∫ 1

0

�(µ)dµ

1 + λ2µ2
(120)

6. Wide system approximation

It will be observed that equation (67) for ψ(µ) contains a term which is of O(e−2a). This
suggests that, for systems which are more than a few mean free paths in thickness, we may
neglect all such terms. If this is the case, the problem simplifies dramatically because one no
longer needs to solve the integral equation (104). The solution now becomes

ψ(µ) � γ (µ)F0(µ) ≡ ψ̃(µ) (121)

and similarly

G0 � 2(ν − ξ)

(η − 1)νξk(1/ν, 1/ξ)
≡ G̃0. (122)

The critical equation for the minimum critical mass becomes from equation (115)

tan λ(ac − q) = λ(ν + ξ)

λ2 − νξ
. (123)

Clearly therefore the fuel mass is given by

M(x) = 1

η − 1
+ G̃0 cos λx +

∫ 1/r̂

0

dµ

µ
ψ̃(µ) e−a/µ cosh(x/µ). (124)

It will be important to assess the accuracy of this approximation in cases of practical interest.

7. Numerical examples and discussion

In this section we will solve the integral equation (104) numerically and calculate G0 and
M(x). These values will then be compared with the numerical work in II and an estimate of
the error involved in the numerical method used in II made. In addition, we will assess the
accuracy of the wide system approximation as developed in section 6.

To carry out a numerical solution of equation (104), a number of subsidiary functions must
be put in convenient forms; in particular, �(µ), X(−µ) and γ (µ). We note from equation
(72) that

�(µ) = tan−1(π/Q(µ)). (125)

Now it is essential to choose the branch of �(µ) which varies from π/2 to 0 as µ varies from
0 to 1/r̂ . From equation (63) we know that Q(0) = 0 and Q(1/r̂) = ∞; however, in some
instances Q(µ)can change sign. In particular, we have observed that Q(µ) starts at zero, then
can become negative before increasing through zero. In this case the appropriate branch of �

must be chosen. In general, Q(µ) remains positive and equation (125) is used. However, if
Q < 0, then we must use

�(µ) = π − tan−1(−π/Q(µ)). (126)

To illustrate this behaviour we shall use the data for graphite and water given in table 1.
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Figure 1. Functions associated with graphite.

Table 1. Moderator nuclear data in cgs units.

Water Graphite

Ackroyd Lamarsh Ackroyd Lamarsh

L 2.86 2.85 49.98 59.1
Ls 5.51 5.51 20.0 19.3
�tr

tm 1.818 2.083 0.416 7 0.397
�tr

fm 0.306 7 0.295 0.277 8 0.328
�stm 2.139 2.45 0.416 7 0.397
�sfm 0.920 0.885 0.294 3 0.347
�rm 0.035 8 0.041 9 3 × 10−3 2.76 × 10−3

�atm 0.022 1 0.019 7 3.2 × 10−4 2.4 × 10−4

µ̄t 0.15 0.15 0.0 0.0
µ̄f 0.667 0.667 0.056 0.056
csm 0.987 99 0.990 63 0.999 23 0.999 40
crm 0.883 27 0.857 97 0.989 20 0.991 59
ν 0.188 90 0.167 02 0.047 96 0.042 56
ξ 0.093 93 0.086 25 0.119 38 0.130 75
r̂ 0.166 68 0.140 30 0.666 16 0.825 70

Figures 1 and 2 are for graphite and water, respectively and show the values of Q(µ) and
�(µ). The discontinuity at µ = 1 is evident and in both cases Q > 0.

Another function of importance is X(−µ). This is defined from equation (74) by

X(−µ) = − 1

µ
exp

(
− 1

π

∫ 1/r̂

0

dµ0�(µ0)

µ0 + µ

)
. (127)

We know that as µ → 0, X(−µ) ∼ const µ−1/2 and as µ → 1/r̂ , X(−µ) is finite. Thus, we
use for numerical purposes the function

X0(µ) = √
µX(−µ). (128)

Similarly, from equation (103) we know that γ (µ) ≈ const µ−1/2, thus the function

γ0(µ) = √
µγ (µ) (129)
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Figure 2. Functions associated with water.

is used. Both X0 and γ0 are numerically benign. γ (µ) does have a principal value integral
associated with it but this is dealt with by an appropriate subroutine in the IMSL library
(1998). Indeed, all supplementary quadratures and root finding (e.g., values for ν, ξ, λ) are
calculated using the IMSL subroutines. We have also shown in section 4 that the solution
ψ(µ) ∼ const µ−1/2 as µ → 0 and so we introduce the additional function

	(µ) = √
µψ(µ). (130)

In fact for the special case a = ac, ψ(µ) ∼ const
√

µ as µ → 0, but this does not affect the
usefulness of equation (130). In terms of 	, X0 and γ0 we may rewrite equation (104) as

	(µ) = g(µ) +
∫ 1/r̂

0
dµ0K(µ,µ0)	(µ0) e−2a/µ0 (131)

where

g(µ) = 2

η − 1
γ0(µ)

[
1

ν
k(µ, 1/ξ) − 1

ξ
k(µ, 1/ν) − µk(1/ν, 1/ξ)

]
(132)

and

K(µ,µ0) = γ0(µ)

X0(µ0)

[
νk(µ, 1/ξ)

1 + νµ0
− ξk(µ, 1/ν)

1 + ξµ0
− k(1/ν, 1/ξ)

µ + µ0

]
. (133)

The function k(z, ζ ) can be reduced to the convenient form shown below

k(z, ζ ) = 2p(z − ζ )

(1 + λ2z2)(1 + λ2ζ 2)
[(1 − λ2zζ ) cos λ(a − q) − λ(z + ζ ) sin λ(a − q)]. (134)

It is equation (131) which will be solved numerically. For this we use the NAG library
subroutine D05ABF, details of which may be found in I. The NAG routine is particularly
useful as it presents results in the form of an interpolation and so can be used directly in any
subsequent quadratures to find M(x), MT and ac. However, because of the discontinuity in
slope of Q(µ) in equation (63) at µ = 1, there are some corresponding discontinuities in
equation (131). This leads to some oscillatory behaviour in 	(µ) when using the NAG library
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Table 2. Fissile mass in graphite moderated system.

a (mfp) a (cm) MT(N) MT(WS) MT(EX)

9.191 22.057 166.06 166.06 166.05
8.334 20 166.7 166.07 166.07
6.251 15 168.5 166.66 166.70
4.167 10 172 169.54 169.62
2.917 7 177 173.70 173.80
2.084 5 182 178.36 178.50

a (mfp): Slab half-thickness in mean free paths.
MT(N): Numerical solution of equation (26).
MT(WS): Wide slab approximation.
MT(EX): Numerical solution of equation (131).

Table 3. Fissile mass in water moderated system.

a (mfp) a (cm) MT(N) MT(WS) MT(EX)

16.57 9.114 31.74 – –
16.563 9.1107 – 31.736 31.736
14.54 8 31.86 31.770 31.771
10.91 6 32.85 32.597 32.602

9.090 5 34.40 34.042 34.049
7.272 4 37.79 37.305 37.316
5.454 3 46.31 45.600 45.621

routine, even with 100 terms in the Chebyshev series. For this reason, we have developed
another method of solving (131) based upon iteration. That is we write

	n+1(µ) = g(µ) +
∫ 1/r̂

0
dµ0K(µ,µ0)	n(µ0) e−2a/µ0 (135)

with 	0(µ) = g(µ). This procedure converges rapidly and after three iterations little
difference is noted between the solutions. In evaluating this iterative process we stored
the 	n values by means of an interpolation formula for use in the n+1 iteration. 	 itself has no
physical meaning and therefore only integrals over it are required. Any residual oscillations
around µ = 1 are therefore averaged out and we are confident that our numerical results are
accurate to the figures given.

We illustrate the theory by means of the moderator data given in table 1 using Ackroyd’s
set. For graphite, we have calculated the mass distribution function and the total mass content
for a range of slab half-thicknesses. The exact results are compared with those from the wide
slab approximation and some results obtained by solving equation (26) directly (II). Table 2
gives the results for graphite.

The first row in table 2 corresponds to the critical value ac and the units are in cm. MT is
defined by equation (65). The values of ac for the wide lab and exact cases are identical to six
significant figures. The values of MT are also correct to four significant figures. We note that
the numerical method of II becomes progressively less accurate as the thickness decreases.
This is not unexpected as the numerical method employed has difficulty in reproducing the
very steep rise in M(x) near the boundaries. We also note that the wide slab approximation is
very accurate. The error will increase for a much smaller than a few mean free paths but such
sizes are in a region where the equation itself is no longer valid.

Analogous results for water are given in table 3 and conclusions similar to those for
graphite can be drawn.
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Figure 3. Mass distribution function for minimum critical mass case and for a = 20 cm.
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Figure 4. Solution of integral equation for graphite minimum critical mass case, a = ac.

We illustrate in figure 3 the form taken by M(x) by considering the special case of a = ac

and the case a = 20 cm for graphite. The difference is evident, with the value of M(ac) being
zero whilst that for a = 20 cm is infinite. It is also of interest to observe how the solution
	(µ) varies for the two cases. Figures 4 and 5 show this behaviour. Figure 4 is for a = ac

and figure 5 for a = 20 cm. We note that for a = ac, 	 < 0 for all values of µ(0, 1/r̂),
whereas for a = 20 only a small region of 	(µ) is negative. It is this dramatic change in
behaviour that is responsible for the differences in M(x). We also note in figures 4 and 5 the
oscillations around µ = 1. This is perhaps an example of the Gibbs phenomenon since g(µ)

has a discontinuity at µ = 1. Analogous behaviour is observed for water.
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Figure 5. Solution of integral equation for graphite, a = 20 cm.

8. Conclusions

The exact solution derived in this paper forms a benchmark against which to assess the accuracy
of less accurate but more convenient schemes of solution. We have noted in particular that the
wide slab approximation, which arises when terms of O(e−2a) are neglected, is exceptionally
accurate and can be used with confidence in calculating M(x), ac and MT. The numerical
method used in II, however, is restricted due to the difficulty it has in dealing with the steep
rise in M(x) near x = a. However, in the case of a = ac it is very accurate.

Appendix. Some mathematical relationships

Several identities are used in the text; here we outline their proof.

Relationship 1
The diffusion kernel Pt(x) may be written as

Pt(x) = At e−νx +
1

2

∫ 1

0

dµ

µ
g(csm, µ) e−�tmx/µ (A1)

where

At = ν(1 − ν2)

csm(ν2 − 1 + csm)
. (A2)

The Fourier transform of Pt(x) is

P̄t(k) = tan−1 k

k − csm tan−1 k
. (A3)

The integral ∫ ∞

−∞
dx cos(λx)Pt(|x|) = 2νAt

ν2 + λ2
+

∫ 1

0

dµg(csm, µ)

1 + λ2µ2
. (A4)
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Figure 6. Singularities in the z-frame.

But∫ ∞

−∞
dx cos(λx)Pt(|x|) = 1

2

∫ ∞

−∞
dx(eiλx + e−iλx)Pt(|x|) = 1

2
(P̄t(λ) + P̄t(−λ)) (A5)

and using the fact that P̄t(k) = P̄t(−k), we find

2νAt

λ2 + ν2
+

∫ 1

0

dµg(csm, µ)

1 + λ2µ2
= tan−1 λ

λ − csm tan−1 λ
(A6)

as used in equation (48).

Relationship 2
We need a simple expression for the integral∫ ∞

−∞
dx cos(λx)Ptf(|x|) = 2νCt

ν2 + λ2
+

2ξCf

ξ 2 + λ2
+

1

2

∫ 1

0

dµµB0(µ)

1 + λ2µ2
+

1

2

∫ 1/r̂

1

dµµB1(µ)

1 + λ2µ2
.

(A7)

By using a relation analogous to (A5), we find∫ ∞

−∞
dx cos(λx)Ptf(|x|) = P̄tf(k)

where

P̄tf(λ) = tan−1(λ/r̂)

λ − crmr̂ tan−1(λ/r̂)

tan−1 λ

λ − csm tan−1 λ
(A8)

hence we have (49) in the text.

Relationship 3
We now have to prove equations (59) and (60). Consider the integral

I = 1

2π i

∫
C

dzz log((z + 1)/(z − 1)) log((r̂z + 1)/(r̂z − 1))

(z − µ)Mt(z)Mf(z)
(A9)

where

Mt(z) = 1 − 1

2
csmz log

(
z + 1

z − 1

)
(A10)

Mf(z) = 1 − 1

2
crmzr̂ log

(
r̂z + 1

r̂z − 1

)
. (A11)

We now take the contour C as shown in figure 6. It is assumed in all cases that r̂ < 1.
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By expanding the contour outwards, we pick up the poles at ±1/ν and ±1/ξ , hence

I = − 8νµCt

1 − ν2µ2
− 8ξµCf

1 − ξ 2µ2
. (A12)

Contracting the contour onto the cut and noting the embedded pole at z = µ, we find

I = 2µP.

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2
+ 2µ

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2
+ µg(csm, µ)g(crm, r̂µ)

×
[
−π2 +

(
−L(µ) +

1

2
csmµ(π2 + L2(µ))

)

×
(

−L(r̂µ) +
1

2
crmr̂µ(π2 + L2(r̂µ))

)]
0 � µ � 1 (A13)

and for 1 � µ � 1/r̂

I = 2µ

∫ 1

0

dµ′µ′B0(µ
′)

µ′2 − µ2
+ 2µP.

∫ 1/r̂

1

dµ′µ′B1(µ
′)

µ′2 − µ2
+

µL̄(µ)

1 − 1
2csmµL̄(µ)

g(crm, r̂µ)

×
(

L(r̂µ) − 1

2
crmr̂µ(π2 + L2(r̂µ))

)

where L̄(µ) = log((µ + 1)/(µ − 1)).
Equating (A12) and (A13) gives (59) and (60). Also we note that although we have

assumed that ν < r̂ , the same result arises if ν > r̂ . In that case the poles at z = ±1/ν occur
embedded in the cut in the regions (−1/r̂,−1), (1, 1/r̂).
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